

Course:	Electrical Actuators – 0908323 (3 Cr. – Core Course)				
Instructor:	Dr. Ahmad Malkawi <i>Office:</i> Mechatronics Engineering Department. <i>Office Hours:</i> Wed 11:00-12:00AM, Tue 9:00 – 10:00 AM <i>Email</i> : <u>ah.malkawi@ju.edu.jo</u>				
Course Website:	http://eacademic.ju.edu.jo/ah.malkawi				
Catalog Data:	Magnetic circuits; single-phase transformers: Principles, analysis, performance characteristics and testing; electromechanical energy conversion; principles and classification of DC generators; DC motors: analysis, performance characteristics, starting, testing and speed control; synchronous motors: analysis, performance characteristics, applications, starting, and testing; three-phase induction motors: analysis, performance characteristics, testing, starting and speed control.				
Prerequisites by					
Course:	Electric circuits (2) 0903212				
By Topic:	and Electrical circuits theory.				
Textbook:	• Electric Machinery Fundamentals, Stephen J. Chapman 4th Edition McGraw- HillMaterial.				
References: Schedule & Duration:	• Lectur note				
	15 Weeks, 30 lectures (90 minutes each) plus exams.				
Minimum StudentMaterial:	Textbook, class handouts, scientific calculator, and an access to a personal computer.				
Minimum College	Classroom with whiteboard and projection display facilities, library, computational facilities with MATLAB, Simulink and other engineering programs.				
Facilities: Course Objectives:	This is the main course in which mechatronics engineering students study the discipline of electrical actuators (mainly rotary electromagnetic actuators). It is designed to achieve the following objectives:				

Course Learning Outcomes and Relation to ABET Student Outcomes:

Upon successful completion of this course, a student should:

- Understand electromagnetic and electromechanical conversion principles including the motor effect and the generator effect.
- Understand single phase transformers; Principles, analysis; performance characteristics and tests to establish parameters.
- Understand DC Motors; Principles, analysis; performance characteristics.
- Understand the concept of 3-phase rotating field magnetic field that is necessary for all AC motors (induction and synchronous).
- Understand 3-phase induction Motors; Principles, analysis; performance characteristics.
- Understand 3-phase synchronous Motors and generators; Principles, analysis; performance characteristics.
- Be able to obtain the nameplate for a motor and analyse its parameters.
- Be aware of the modern issues regarding the energy efficiency design of motors and rare earth (4) metal permanent magnets.

(4)

Course Topics: Topic Description Hrs 1. Electromagnetic Circuits Review Basic Laws and relationships of electro-magnetic 9 structures: Ampere Law, B/H Characteristics. 2. Single phase transformer: 6 3. Principles and classification of DC generators; Dc motors; Analysis, performance characteristics, Starting, testing and speed control; 9 4. Three phase induction motors; Analysis, performance characteristics, applications, Starting 12 and speed control; tests to establish parameters. 9 5. Synchronous machines; Analysis, performance characteristics, applications, Starting and testing;

Ground Rules:	Attendance is required and stric lecture; Absence of more than <u>7 l</u> course.	ce is required and strictly enforced. To that end, attendance will be taken every besence of more than <u>7 hours</u> will result in the expulsion of the student from the				
Assessments:	Exams and Projects. Midterm exam on November 18.					
Grading						
Structure:	Project		20 %			
	Midterm Exam		30 %			
	Final Exam		50 %			
		Total	100%			

Last updated: Sep. 2019